
Chapter 7 
Understanding Bikeability: Insight 
into the Cycling-City Relationship Using 
Massive Dockless Bike-Sharing Records 
in Beijing 

Enjia Zhang, Wanting Hsu, Ying Long, and Scott Hawken 

Abstract Cycling records from emerging dockless bike-sharing services provide 
new opportunities to gain insight into the interactions between multiple fine-
scale cycling characteristics and built environmental elements. Using Beijing as 
an example and the street as the analytic unit, this study examined the associations 
between three cycling characteristics and spatial visual elements while controlling for 
other built environmental features. The results showed that most visual elements were 
significantly associated with cycling characteristics, but their performance differs 
across models for trip distance, speed, and volume. The results also indicated that 
individuals riding long distances or at fast speeds preferred streets with more sky 
and greenery views. Likewise, wider streets with less spatial disorder, tended to 
have a higher riding volume. The findings can enhance the understanding of cycling 
behaviors and promote the implementation of urban design for more bikeable streets. 

Keywords Dockless bike-sharing · Bikeability · Cycling characteristics · Spatial 
visual elements · Beijing 

7.1 Introduction 

Cycling is believed to promote the sustainable development of cities by providing 
a low-emission solution for commuting and recreational travel, especially in high-
density cities where it can help address the last-mile problem (Nogal and Jimenez 
2020). Additionally, it is considered a physical activity that brings health benefits
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to individuals (Otero et al. 2018). Therefore, cycling behavior (Kaplan et al. 2015; 
Castanon & Ribeiro 2021) and influential elements from various aspects (Castanon & 
Ribeiro 2021; Hardinghaus et al. 2021; Shaer et al. 2021) have long been a topic of 
interest for scholars in transportation, urban planning, and public health (Forsyth & 
Krizek 2011; Hu et al.  2021; Li et al.  2021). 

Benefiting from the development of information and communication technolo-
gies, docked and dockless IT-based bike-sharing, as emerging modes of cycling, 
have witnessed rapid growth recently (Pons et al. 2016; Chen et al. 2020). Mean-
while, IT-based bike-sharing can collect massive cycling records, enabling quan-
titative studies of the spatiotemporal behaviors and spatial preferences of cyclists. 
Previous studies have measured cycling behaviors and uncovered associated built 
environmental features, such as the density and distance of facilities, bike station 
attributes, geographic altitude, walkscore, street network, and mixed land use, based 
on the pick-up and drop-off data from bike stations (Faghih-Imani et al. 2014; El-Assi 
et al. 2017; Scott and Ciuro 2019). 

Compared to bike-sharing based on docking stations, dockless bike-sharing allows 
users to pick up and drop off bicycles anywhere within a service zone (Orvin & Fatmi 
2021). Dockless bike-sharing has the potential to effectively promote active travel, 
improve user mobility, encourage more users to participate in cycling (Orvin & Fatmi 
2021), improve the efficiency of bicycle utilization (Tao & Zhou 2021), and extend 
the transfer radius of public transportation (Ai et al. 2019), in light of the delivered 
demand-responsive, multimodal services (Shaheen et al. 2012) and flexible access 
to public transportation (Duran-Rodas et al. 2020). Moreover, dockless shared bikes 
can collect more detailed and fine-scale cycling data for each street during a user’s 
ride. Therefore, there has been a surge in research on the characteristics of dockless 
bike-sharing and its relationship with the built environment (Fan & Zheng 2020; Su  
et al. 2020; Li et al.  2021). 

However, most studies have focused on cyclists’ route choices, transfers with other 
public transportation, and bicycle parking, while failing to measure and compare 
other cycling characteristics, such as speed and distance. Furthermore, although 
some objective and perceived built environments, such as the distance to subway/bus 
stations, mixed land use, and the density of residential and office functions and 
buildings, have been shown to be highly associated with cycling trips (Scott & Ciuro 
2019; Li et al.  2021; Guo  & He  2021), the spatial visual elements in the streets 
(Goodspeed & Yan 2017) that urban designers and governments frequently highlight 
in urban design guidelines (Tang & Long 2019) have not been considered in these 
studies. 

To address this research gap, this study used Beijing as a study area. The study 
analyses data from the bike-sharing company Mobike to portray three cycling char-
acteristics, and compared their different relationships with spatial visual elements, 
while also controlling for other built environmental elements with the potential to 
influence cycling behaviors.
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7.2 Methodology 

7.2.1 Research Design 

This study focused on the area within Beijing’s Fifth Ring Road (667 km2), which is 
the main urban built-up area for most commuter trips by all modes of transportation 
in Beijing. The analytic unit was a street segment, which is the portion of the road 
between two road intersections. Ordinary least squares (OLS) regression was used to 
examine the relationship between cycling characteristics and spatial visual elements. 
Meanwhile, we controlled for other built environmental factors that may influence 
travel demand (Ewing & Cervero 2010). Three cycling characteristics were examined 
in this study: average trip distance, average trip speed, and daily trip volume. Prior 
to regression analysis, data distribution was checked, and multicollinearity between 
independent variables and control variables was assessed (Fig. 7.1). 

Fig. 7.1 Framework of this study
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Fig. 7.2 Spatial visualization of three cycling characteristics using Jenks natural breaks 

7.2.2 Variables and Data 

7.2.2.1 Dependent Variable: Measurement of Cycling Characteristics 

Dockless bike-sharing data were collected from Mobike, which was established in 
China in 2015 and quickly became one of the most popular bike-sharing compa-
nies. It was acquired by the e-commerce giant Meituan in April 2018. We collected 
anonymous bike trip records for the area within Beijing’s Fifth Ring Road over a 
six-month period (181 days from January 1 to June 30, 2018), which were aggregated 
by street segment. The data included the street ID, date, daily user volume, daily bike 
trip volume, user’s average speed, and average trip distance. Three indicators were 
calculated and used in this study: the average trip distance of all users who passed 
through a street segment (DIST_Mean), the average riding speed of all users who 
passed through a street segment (SPD_Mean), and the daily volume of Mobike trips 
on each street (UNIQPV_Mean), which were used to depict the distance, speed, and 
volume of cycling for each street. The data were anonymized to protect user privacy. 

Figure 7.2 presents a spatial visualization of the three dependent variables. The 
average trip distances on the outer-ring streets were higher than those on the fourth-
ring road and lower near subway stations. The spatial distribution of the average 
speed shared some commonalities with the previous map of average trip distances. 
The trip volume map showed that Mobike trips were concentrated in the city center 
and near subway stations. The differentiated patterns of these indicators indicate 
different associated built environmental elements. 

7.2.2.2 Independent Variable: Measurement of Spatial Visual Elements 

Spatial Visual Elements. The spatial visual elements considered as independent vari-
ables in this study were elements viewed from the street, which could be extracted 
from street-view images (SVI). We obtained the SVIs by crawling Tencent Map 
using its application programming interface (API). For all streets processed within 
the fifth ring road area, we divided each street segment into vertices with a distance
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of 50 m, resulting in an average of four points for each street to collect SVIs that 
depict the overall visual conditions of each street regarding the continuity of street 
elements and landscape. The corresponding vertex coordinates were inputted into 
the place ID retrieval API and the API for downloading the SVIs of four horizontal 
angles: front, back, left, and right. As a result, several vertices spaced 50 m apart 
were distributed along the street for each street, providing us with 4-direction scenes 
for each vertex that may represent the overall spatial elements of a specific street. 

Based on the SVIs, we used the SegNet pixel-wise image semantic segmentation 
method (Badrinarayanan et al. 2017) to calculate the proportions of the sky (P_Sky), 
trees (P_Tree), road (P_Road), and pavement (P_Pavement) to depict the streets’ 
beauty (greenery and openness) and convivence for riding (road and pavement). 
Additionally, we measured 15 disorder indicators that could influence the perceived 
safety for cyclists (Kyttä et al. 2014) by applying the deep learning model proposed 
by Chen et al. (2022). Specifically, the 15 disorder indicators were abandoned 
buildings (Bld_Abandoned), buildings with damaged facades (BldFac_Damaged), 
buildings with unkempt facades (BldFac_Unkempt), graffiti/illegal advertise-
ments (Adver_Graffiti), illegal/temporary buildings (Bld_Illegal), stores with poor 
signboards (Store_Poorsign), stores with poor facades (Store_Poorfac), vacant 
and pending stores (Store_Vacant), messy and unmaintained greening (Unmain-
green_Messy), garbage/litter on the street (Garbage), construction fence remnants 
(Fence_Remnant), broken roads (Road_Broken), occupied roads (Road_Occupied), 
broken infrastructure (Infra_Broken), and damaged public interfaces (Inter-
face_Damaged). For each observed SVI point, we scored the presence of the above 
elements as 1; otherwise, it was 0. Thus, for each street, the average score for each 
disorder variable reflected the average degree of disorder. 

7.2.2.3 Control Variable: Measurement of Five Ds 

The five Ds (Destination Accessibility, Distance to Transit, Density, Diversity, and 
Design) have been identified as influential built environments that can moderate 
travel demands (Ewing & Cervero 2010). Therefore, this study introduced five Ds as 
control variables to better reveal the relationships between spatial visual indicators 
and cycling characteristics. Table 7.1 shows the descriptions of all variables.

Destination Accessibility. As the origin–destination is the primary determinant 
of the cycling route, two space syntax indicators were utilized to control the role 
of the street network in influencing the route preferences of cyclists: (1) the inte-
gration index, which gauges a street segment’s ability to attract incoming traffic 
and reflects its centrality within the entire system, and (2) the choice index, which 
evaluates the benefits of a spatial unit as the shortest travel path and reflects the 
possibility of a street segment being traversed (Hillier 1999). We computed the inte-
gration and choice measures using analysis radii of 800 m (Int800, Cho800), 1600 m 
(Int1600, Cho1600), 2400 m (Int2400, Cho2400), 3200 m (Int3200, Cho3200), 
4800 m (Int4800, Cho4800), 9600 m (Int9600, Cho9600), and n (global analysis, 
Intall, Choall), respectively. To evaluate access to the city center, we calculated the
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distance from the midpoint of each street to the flag point base in Tiananmen Square 
(D_TAM). We also considered several crucial sites that could be potential origins 
or destinations for the rides, including dummy variables for residential communities 
(DV_Residence) and offices (DV_Office) within a 100-m distance to the street in the 
Area of Interest (AOI) data, and the density of retail stores (shopping and catering) 
within a 50-m buffer of the street (Den_Retail). 

Distance to Transit. The network distance from the street segment to the nearest 
subway station (D_Subway) was regarded as the distance to transit. 

Density. Density indicators were measured as building counts divided by the street 
length (Den_Bld). 

Diversity. Diversity measures the mixing degree of land use in 50-buffer streets 
(Mix-Use). The normalized proportion of each main category of Point of Interest 
(POI) was calculated using Shannon’s entropy. 

Design. Some street-level urban forms in the design category, such as the width 
(Width) and length (Length) of the street, average height (Ave_Height) and continuity 
(Ave_Continuity) of surrounding buildings, and the average cross-section (street 
width/building height) (Ave_CrossSection) were also calculated by referring to the 
GIS-based methods developed by Harvey (2014). 

7.3 Results 

7.3.1 Data Processing and Preliminary Tests 

Before conducting the regression analysis, we checked the distributions of all vari-
ables. Since Den_Retail and UNIQPV_Mean were long-tailed data, we used the log 
transformation on these two variables to ensure the reliability of the models. Then, 
we applied Pearson’s correlation and variance inflation factor (VIF) tests to avoid the 
multicollinearity effect. The results showed that the multicollinearity of the model 
was not severe, with Pearson’s correlation coefficients less than 0.8, and VIF values 
less than 5. 

To ensure that the OLS model performed better, we calculated the Pearson correla-
tions between the various space syntax measures and the three cycling characteristic 
indicators. We selected those with higher coefficients to be used in the following 
regression analysis. The results showed that for DIST_Mean, Int800 and ChoAll had 
the highest values; for SPD_Mean, Int1600 and Cho800 showed a closer relationship; 
and for LnUNIQPV_Mean, Int3200 and Cho3200 presented the highest coefficients. 
Therefore, this study considered different integration and choice variables in the three 
regression models.
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7.3.2 Regression Analysis and Results 

Table 7.2 displays the results of the regression models with different dependent 
variables. The results showed that the built environmental variables could explain 
41.2% of the trip distance, 34.8% of the cycling speed, and 54.9% of the trip volume, 
suggesting that trip volume has a stronger relationship with built environmental 
elements than trip speed and distance.

Among all the spatial visual variables, the proportions of roads and pavements 
in the SVIs were significantly associated with all three cycling characteristics, 
while most indicators such as P_Sky, P_Tree, Bld_Abandoned, BldFac_Unkempt, 
Adver_Graffiti, Bld_Illegal, Store_Poorsign, Store_Poorfac, Unmaingreen_Messy, 
Garbage, Road_Broken, and Road_Occupied, were only relevant to cycling charac-
teristics in specific contexts. 

The results revealed that people preferred to ride at a faster speed on streets with 
broader views of sky, greenery, roads, and pavements, as all the proportions of sky, 
trees, road, and pavement in the SVIs were significantly positive with trip distance 
and cycling speed. For trip volume, the proportion of roads had a positive correlation, 
but the pavement proportion had adverse effects. This implies that wider roads with 
narrower sidewalks were more likely to witness more bike-sharing trips. 

The findings for the spatial disorder indicators showed that different cycling char-
acteristics were related to diverse elements. Long-distance rides usually occurred 
in areas with poor spatial quality, such as abandoned buildings, unkempt building 
façades, poor store façades, and broken roads. This implies that people who lived 
near urban villages (usually with poor spatial quality) tended to use shared bikes for 
long-distance commuting. 

The results for speed suggested that people would quickly pass places with garbage 
and slow down along streets with unkempt illegal/temporary buildings and messy and 
unmaintained greening. One possible explanation is that places with poor greenery 
and temporary buildings are usually commercial or residential in suburban areas, 
which could be destinations for riders. 

As for trip volumes, some small elements, such as Adver_Graffiti, Store_Poorsign, 
and Garbage, had positive coefficients, whereas some larger items, such as unkempt 
buildings, messy and unmaintained greenery and busy car-filled roads, were nega-
tively associated. This implies that disorder in buildings, landscapes, and roads could 
hinder people’s path choices for cycling. 

Figure 7.3 presents the standardized coefficients for the significant indicators, 
allowing for a more direct interpretation of the differences in the regression results 
among different cycling characteristics. The results showed that street network 
features, potential origin and destination places, access to subway stations, mixed 
land use, and some urban form indicators were highly associated with cycling char-
acteristics, which is consistent with previous studies (Guo & He 2021; Zhuang et al. 
2022). The results also suggest that visual elements on the street, such as the propor-
tion of sky, trees, roads, and pavement, are much more critical for riders than spatial 
disorder indicators on the two sides of the street. Moreover, more spatial disorder
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Table 7.2 Comparison between results using different cycling behaviors as dependent variables 

N = 16,266 Variable description DIST_Mean SPD_Mean LnUNIQPV_Mean 

Destination 
accessibility 

Int800 −1.446c 

(0.421) 

Int1600 −1.198c 

(0.190) 

Int3200 2.097c 

(0.090) 

Cho800 −0.036b 

(0.014) 

Cho3200 0.000 
(0.000) 

ChoAll 0.000c 

(0.000) 

D_TAM −0.082c 

(0.003) 
0.011c 

(0.003) 
−0.011c 

(0.003) 

DV_Residential −0.501c 

(0.019) 
−0.319c 

(0.019) 
0.517c 

(0.019) 

DV_Office 0.048b 

(0.017) 
0.202c 

(0.016) 
0.168c 

(0.017) 

LnDen_Retail 0.008 
(0.004) 

−0.011a 

(0.004) 
0.051c 

(0.005) 

Distance to 
transit 

D_Subway 0.400c 

(0.011) 
0.171c 

(0.011) 
−0.316c 

(0.011) 

Density Den_Bld −0.004c 

(0.001) 
−0.007c 

(0.001) 
−0.007c 

(0.001) 

Diversity Mix_Use −1.248c 

(0.065) 
−1.195c 

(0.063) 
1.820c 

(0.066) 

Design Width −0.002c 

(0.000) 
0.000 
(0.000) 

0.007c 

(0.000) 

Length 0.000c 

(0.000) 
0.001c 

(0.000) 
0.000c 

(0.000) 

Ave_Height −0.002a 

(0.001) 
0.001 
(0.001) 

−0.001a 

(0.001) 

Ave_Section −0.100c 

(0.017) 
−0.067c 

(0.016) 
−0.057c 

(0.017) 

Ave_Continuity −0.278c 

(0.053) 
−0.154a 

(0.051) 
−0.346c 

(0.053) 

Spatial visual 
element 

P_Sky 3.375c 
(0.136) 

1.819c 

(0.130) 
−0.005 
(0.136) 

P_Tree 1.136c 

(0.074) 
0.416c 

(0.071) 
−0.144 
(0.074) 

P_Road 1.072c 

(0.156) 
0.867c 

(0.149) 
2.871c 

(0.157)

(continued)
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Table 7.2 (continued)

N = 16,266 Variable description DIST_Mean SPD_Mean LnUNIQPV_Mean

P_Pavement 1.845c 

(0.177) 
0.490b 

(0.170) 
−1.296c 

(0.178) 

Bld_Abandoned 0.646a 

(0.315) 
0.290 
(0.301) 

−0.055 
(0.317) 

BldFac_Damaged −0.105 
(0.077) 

0.008 
(0.074) 

−0.114 
(0.078) 

BldFac_Unkempt 0.420c 

(0.088) 
0.094 
(0.084) 

−0.650c 

(0.089) 

Adver_Graffiti −0.049 
(0.029) 

−0.043 
(0.027) 

0.192c 

(0.029) 

Bld_Illegal −0.392 
(0.216) 

−0.548b 

(0.207) 
0.104 
(0.217) 

Store_Poorsign −0.052 
(0.031) 

−0.016 
(0.029) 

0.161c 

(0.031) 

Store_Poorfac 0.342c 

(0.096) 
−0.073 
(0.092) 

−0.176 
(0.097) 

Store_Vacant −0.189 
(0.110) 

−0.119 
(0.105) 

−0.006 
(0.110) 

Unmaingreen_Messy −0.185 
(0.126) 

−0.248a 

(0.120) 
−0.598c 

(0.127) 

Garbage 0.059 
(0.032) 

0.068a 

(0.031) 
0.107c 

(0.032) 

Fence_Remnant 0.051 
(0.058) 

−0.082 
(0.055) 

0.028 
(0.058) 

Road_Broken 0.070a 

(0.032) 
0.044 
(0.031) 

0.001 
(0.032) 

Road_Occupied −0.057 
(0.082) 

−0.042 
(0.078) 

−0.223b 

(0.082) 

Infra_Broken −0.022 
(0.046) 

0.077 
(0.044) 

−0.013 
(0.047) 

Interface_Damaged 0.034 
(0.044) 

−0.017 
(0.043) 

0.016 
(0.045) 

R2 0.414 0.349 0.550 

Adjusted R2 0.412 0.348 0.549 

Note The table reports the coefficients and predictive power (R2) for each model’s column. Standard 
errors are in parentheses. Significance level: ap < 0.05, bp < 0.01, and cp < 0.001

elements were associated with trip volume than with distance and speed, while more 
visual proportion indicators from the street view were significantly correlated with 
trip distance and speed than with volume. These results reflected riders’ varying 
preferences for spatial visual elements.
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Fig. 7.3 Comparison between the standardized coefficients of statistically significant indicators (p 
< 0.05) for three cycling characteristics 

7.4 Conclusions and Discussion 

Taking Beijing’s central city as the study area and street segments as the analytic unit, 
this study examined the relationship between three cycling characteristics (average 
trip distance, average riding speed, and daily volume) and spatial visual elements by 
controlling for other potentially influential built environmental factors. After control-
ling for the role of street segments in the whole road network and the width of the 
road, the results revealed that individuals who ride long distances or at high speeds 
preferred a broad vision of sky and trees on the streets, while wider streets with fewer 
spatial disorder elements in terms of larger items such as buildings, landscapes, and 
roads could have a higher riding volume. Moreover, the results suggested that the
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visual proportions of elements on the road were much more critical for riders than 
spatial disorder indicators on both sides of the street. 

The findings could enhance our understanding of cyclists’ spatial preferences 
regarding different riding scenarios (e.g., long-distance riding, high-speed riding, 
most frequent riding) and promote urban design implementations for more bikeable 
streets. The results revealed distinct spatial visual elements for different cycling 
characteristics, which can help urban designers develop corresponding guidelines 
and encourage people to promote this sustainable commuting mode and improve the 
overall usage efficiency of the bike-sharing system. 

However, there are still some limitations to be addressed in future research. First, 
due to the limitations of data acquisition, we could only obtain the data aggregated 
to the street segment, and not each ride’s specific OD and path data. With more data, 
future studies could consider the route choice and direction of cycling to analyze 
the built environmental elements along the entire ride trip and on the closed side of 
the street. Second, further studies should expand the data sources to measure bike 
infrastructure, such as bike lanes and parking areas, to better investigate preferences 
for cycling and parking. 

Funding This work was supported by the National Natural Science Foundation of China grant 
number 52178044 and the UNSW-TSINGHUA UNIVERSITY Collaborative Research Fund 
RG180121. 
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